The Effect of Internet of Things on Healthcare Technology

By October 29, 2015Articles, Health

Introduction

The Internet of Things (IoT) describes a phenomenon[i] through which the operational aspects of the physical world become increasingly integrated with digital platforms, enabling information to move seamlessly toward the computational resources that are able to make sense of it. Its functionality derives from the interactions between three architectural layers: sensors tasked with data collection, communication networks between sensors that orchestrate data flow, and the analytical computational platforms that interpret these data and convey meaningful representations to users. Alongside the big data revolution, IoT is at the center of a substantial increase in the mobility and diversity of data which have helped usher in a new age of open information across a plethora of fields.

Unprecedented expansion in the capacity for data transfer at each of these levels has facilitated a big push in the healthcare sector to identify a more encompassing set of performance indicators, and attempt to record, track and analyze these exhaustively. By expanding the ambit of medical monitoring applications with the aid of portable devices, the Internet of Things has tremendous untapped promise in radically improving health outcomes, particularly with regard to the treatment of chronic diseases which expends an inordinate amount of human and economic resources.[ii] We thus examine some of the key enabling mechanisms which have contributed to the influence wielded by the Internet of Things on the developmental frontiers of healthcare technology.

Drivers

Big Data Infrastructure: The latent demand for healthcare insight has fuelled the development of data warehouses and algorithms which provide back-end support for processing information collected by the network of sensors in a big data ecosystem. This can be attributed to the increasing subscription to evidence based approaches that require individual data sets to be aggregated to constitute sufficiently sized populations, which can then be mined for statistically rigorous conclusions on treatment efficacy. This has redirected efforts downstream toward data collection and tracking through building up the network of data collection devices.

Widening Sensor Application: The deployment of cost efficient sensors at an increasing rate has permitted the IoT movement to gain traction in its progress toward a comprehensive network. Gartner forecasts there will be almost five billion connected devices by the end of this year and 25 billion in 2020[iii]. Sensors are now capable of being embedded in a wider spectrum of physical objects that span the healthcare sector and are connected to monitors real-time through the same internet protocol supporting the Internet. They assume a burgeoning array of functions including accelerometry, compass direction, positional tracking and environmental indicator logging, all of which generate usable information that can be interpreted by applications to form a more holistic picture of patient health status or mined for predictive insight.

Interoperability: With Internet of Things infrastructure unfolding in a bottom-up manner, policy actions to encourage interoperability across disparate information systems has helped unlock tremendous potential economic utility[iv] and broadened the set of interdisciplinary use cases of healthcare devices. As an increasing number of services gravitate toward benchmarks such as the Open Platform Communications (OPC) standard, healthcare applications relying on IoT become more adept at eliminating barriers to usage. The OPC standard was initially conceptualized in 1996 as a means of creating commonalities across various forms of industrial telecommunication, and continues to serve as a benchmark that various data transportation technologies rely upon to facilitate data access and interoperability. The convergence of these trends permits drawing on information from a patient’s demographic profile or consumption habits that might exist outside of his electronic medical records to make more accurate diagnoses and recommendations, and could also introduce one-stop-shop solutions that provide payment history or drive reimbursements alongside treatment recommendations. We learn that complex system design challenges depend on interoperability to acquire full employability across a variety of settings, from home health monitors to health informatics systems that mandate coordination over multiple levels.

Privacy/Security: As information of a sensitive nature is often contained within a healthcare information system, security rapidly emerges as an imperative. Safeguards restricting the flow of data in the spirit of HIPAA have sprung up in a prevalent manner, providing control in the form of virtual private networks demanding device authentication, secure booting, access management, firewalling and operational systems that receive periodic updates and patches to better acclimate to nascent cyberspace threats